Flattenings and Koszul Young flattenings arising in complexity theory

نویسنده

  • Yonghui Guan
چکیده

I find new equations for Chow varieties, their secant varieties, and an additional variety that arises in the study of complexity theory by flattenings and Koszul Young flattenings. This enables a new lower bound for symmetric border rank of x1x2⋯xd when d is odd, and a new lower complexity bound for the permanent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul-Young Flattenings and Symmetric Border Rank of the Determinant

We present new lower bounds for the symmetric border rank of the n × n determinant for all n. Further lower bounds are given for the 3 × 3 permanent.

متن کامل

Border Ranks of Monomials

Young flattenings, introduced by Landsberg and Ottaviani, give determinantal equations for secant varieties and provide lower bounds for border ranks of tensors. We find special monomial-optimal Young flattenings that provide the best possible lower bound for all monomials up to degree 6. For degree 7 and higher these flattenings no longer suffice for all monomials. To overcome this problem we ...

متن کامل

Phylogenetic tree constructing algorithms fit for grid computing with SVD

Erikkson showed that singular value decomposition(SVD) of flattenings determined a partition of a phylogenetic tree to be a split. In this paper, based on his work, we develop new statistically consistent algorithms fit for grid computing to construct a phylogenetic tree by computing SVD of flattenings with the small fixed number of rows.

متن کامل

A $2n^2-log(n)-1$ lower bound for the border rank of matrix multiplication

Let M ⟨n⟩ ∈ C n 2 ⊗C n 2 ⊗C n 2 denote the matrix multiplication tensor for n × n matrices. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to prove the border rank lower bound R(M ⟨n,n,w⟩) ≥ 2n 2 − ⌈log 2 (n)⌉ − 1.

متن کامل

Tensor rank is not multiplicative under the tensor product

The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an `-tensor. The tensor product of s and t is a (k + `)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1510.00886  شماره 

صفحات  -

تاریخ انتشار 2015